If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+20x+22=0
a = 1; b = 20; c = +22;
Δ = b2-4ac
Δ = 202-4·1·22
Δ = 312
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{312}=\sqrt{4*78}=\sqrt{4}*\sqrt{78}=2\sqrt{78}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{78}}{2*1}=\frac{-20-2\sqrt{78}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{78}}{2*1}=\frac{-20+2\sqrt{78}}{2} $
| 11d-7=43 | | 50x+70=40x+110 | | 4+x=4-8x | | 26=3(y+6)-5y | | 2b+43=0 | | -1-3x=6x+20 | | 32(50x)=4800 | | 5x+1=9+3x | | -5x+14=3x | | 6.3y=5.4y-1.1y+12.8 | | 8(1-y/2)=-5y+17 | | 3/5(x-5)=-21 | | 7(3m-11)-12m=9m-10 | | -4(n+2)=-16-8n | | 3p+2p=40 | | -8(n+2)+17=-4n-23 | | -5(r+8)=-99 | | -3+3v=4v+3 | | 3x+4(x-3)=6+x | | 5p+6=6p=2 | | 2(x-4)=0.2x+11 | | 2-3(x+4)=4(2x-8) | | 2a-4=-1-a | | 6-2(x+3)=-2x | | 7m-3=2m-18 | | 2x+9.5=20.5 | | -11-v=1-4v | | 2|3-1|3h+11=8 | | q+1=q-1/3 | | 68+x+26=90 | | 3/4x+8.5=20.5 | | (X+4)=(3x-8) |